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Abstract

Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic
precursors has been studied exposing reaction mixtures to natural sunlight in the
SAPHIR chamber in Jllich, Germany. Several experiments with exclusively anthro-
pogenic precursors were performed to establish a relationship between yield and or-
ganic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01
to 10 ug m~3. The yields (0.5-9 %) were comparable to previous data and further used
for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For
the mixed experiments a number of different oxidation schemes were addressed. The
reactivity, the sequence of addition, and the amount of the precursors influenced the
SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer
esters were identified in the aged aerosol at levels comparable to ambient air. OH rad-
icals were measured by Laser Induced Fluorescence, which allowed for establishing
relations of aerosol properties and composition to the experimental OH dose. Further-
more, the OH measurements in combination with the derived yields for anthropogenic
SOA enabled application of a simplified model to calculate the chemical turnover of the
anthropogenic precursor and corresponding anthropogenic contribution to the mixed
aerosol. The estimated anthropogenic contributions were ranging from small (~ 8 %) up
to significant fraction (> 50 %) providing a suitable range to study the effect of aerosol
composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86—0.94).
The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile
than the biogenic fraction. However, in order to produce significant amount of anthro-
pogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C
and provided a less volatile aerosol. A strong positive correlation was found between
changes in volatility and O/C with the exception during dark hours where the SOA
volatility decreased while O/C did not change significantly. This change in volatility un-
der dark conditions is likely due to chemical or morphological changes not affecting
O/C.
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1 Introduction

Formation of atmospheric secondary organic aerosol (SOA) from gas-phase precur-
sors has received considerable attention during the last decade (Hallquist et al., 2009;
Jimenez et al., 2009; De Gouw and Jimenez, 2009; Kroll and Seinfeld, 2008). Sec-
ondary organic aerosol components impact the Earth climate by supporting the forma-
tion of new particles, which increases the number density, and by condensation onto
pre-existing particles, which increases both mass and size. Moreover, SOA formation
and transformation by atmospheric processes influence the physicochemical proper-
ties of atmospheric aerosols. Depending on location, time and specific source regions,
SOA can be produced from both anthropogenic and biogenic volatile organic com-
pounds (VOC). Globally the production of biogenic SOA (BSOA) dominates over the
anthropogenic (ASOA) with estimated fluxes of 88 and 10TgCyr'1, respectively (Hal-
Iquist et al., 2009). As discussed by Hallquist et al. (2009) there are large uncertainties
but all estimates indicate the production of BSOA to be significantly larger than ASOA
(Spracklen et al., 2011; Kanakidou et al., 2005; Heald et al., 2010; Goldstein and Gal-
bally, 2007). Locally and regionally however, the ASOA can supersede the BSOA (e.g.
Fushimi et al., 2011; Steinbrecher et al., 2000; Aiken et al., 2009). The SOA formation
mechanisms are complex and even though we nowadays have a detailed chemical
knowledge on the degradation of most VOC, a large part of the SOA formation and
ageing is still unclear as well as understanding multi-component systems. There are
several field observations where SOA has been attributed to originate from both bio-
genic and anthropogenic sources and it seems that anthropogenic activities enhance
BSOA abundance (e.g. Aiken et al., 2009; Carlton et al., 2010; de Gouw et al., 2005,
2008; Hu et al., 2008; Shantz et al., 2004; Spracklen et al., 2011; Szidat et al., 2006,
2009).

Several studies have recently stressed the potential of anthropogenic biogenic in-
teractions to be of importance for SOA (Spracklen et al., 2011; Hoyle et al., 2011;
Glasius et al., 2011; Galloway et al., 2011; Kautzman et al., 2010). There are several
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potential ways of interactions, both directly by gas-aerosol chemistry and physics, and
indirectly by anthropogenic influence on biogenic source strengths. In the context of
the present study the chemistry of VOC from anthropogenic (AVOC) and biogenic
(BVOC) compounds will be covered. This has also been the main focus of the re-
cent laboratory study of Hildebrandt et al., 2011 and is partly covered in a number
of other studies during the last years (Jaoui et al., 2008; Lambe et al., 2011; Hilde-
brandt et al., 2011; Derwent et al., 2010). Hildebrandt et al. found that ABSOA derived
from mixtures of AVOC and BVOC can be treated as ideal mixtures. The yields can be
parameterised applying the assumption of a common organic phase for partitioning.
In the atmosphere there are a number of interesting issues regarding SOA forma-
tion from mixed air masses where typical anthropogenic precursors behave differently
compared to biogenic precursors. Typical anthropogenic SOA precursors (AVOC) are
aromatic hydrocarbons whereas typical biogenic precursors (BVOC) are terpenoids.
As shown in Table 1 benzene, toluene, and p-xylene (here representing AVOC) react
slower with OH radicals than the unsaturated monoterpenes a-pinene and limonene
(here representing BVOC). Moreover, monoterpenes can also be oxidized by ozone
and NO; enabling SOA production also during dark conditions. In order to elucidate
this further, chamber studies were conducted here to mimic a few selected scenarios
where anthropogenic and biogenic precursors were oxidised and aged both together
and separately. In addition to characterisation of SOA composition by aerosol mass
spectrometry, filter samples were analysed to achieve insight into chemical composi-
tion related atmospheric persistence (volatility).

2 Experimental

The oxidation of the VOC precursors and the following SOA formation took place
in the outdoor atmosphere simulation chamber SAPHIR located on the campus of
Forschungszentrum Julich. SAPHIR is a double-wall Teflon chamber of cylindrical
shape of a volume of 270 m? and has previously been described (Rohrer et al.,
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2005; Bohn et al., 2005). SAPHIR is operated with synthetic air (Linde Lipur, purity
99.9999 %) and kept under a slight overpressure of about 50 Pa. Characterization of
gas phase and SOA particles were performed with a number of instruments (see be-
low). A continuous flow of synthetic air of 7-9 m>h~! maintained the chamber overpres-
sure and compensated for the sampling by the various instruments. This flow causes
dilution of the reaction mixture with clean air. The synthetic air is also used to per-
manently flush the space between the inner and the outer Teflon wall. This and the
overpressure of the chamber serve to prevent intrusion of contaminants into the cham-
ber. The chamber is protected by a louvre system, which is either opened to simulate
daylight conditions, exposing the reaction mixtures in the chamber to natural sun light
or closed to simulate processes in the dark. A fan ensured mixing of trace gases within
minutes, but reduced aerosol lifetime to about 6 h.

In this work 17 yield experiments listed in Table 1 were performed with individual
aromatic (anthropopenic) precursors (benzene, toluene, p-xylene, mesitylene, hexam-
ethylbenzene or p-cymene (biogenic)) producing the ASOA at low NO, (~ 1 ppb) and
high NO, (~ 10 ppb) conditions. ASOA yields were determined from these experiments.
A 1:1 mixture of a-pinene and limonene served as biogenic precursors during other
experiments. Three of the ASOA experiments and four mixed experiments (ABSOA)
with biogenic and anthropogenic precursors were analysed in detail and the exper-
imental procedures for these experiments are illustrated in Fig. 1. In ABSOA 10/6,
the BVOC mixture was added initially and photo-oxidised for 2.5h before the AVOC
(toluene) was added and the mixture was further exposed to sunlight for 3.5 h prior to
filter sampling. In ABSOA 11-12/6 the AVOC was added first and oxidised in sunlight
for 5.75h before the BVOC was added in the dark and the mixture was exposed to
ozone overnight. The ozone was initially about 20 ppb and originated from the previous
photochemistry. Before the filter sampling on the subsequent 2nd day the mixture was
exposed to sunlight for another 4 h. ABSOA 14-15/6 is the analogue to ABSOA 11-12/6
but using xylene instead of toluene as ASOA precursor. During exp. 11/6 the mixing
fan failed at 13:20 h leading to reduced particles losses during filter sampling and the
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subsequent ABSOA part of the experiment. For the fourth ABSOA experiment (22/6)
BVOC and AVOC was added simultaneously and exposed for photo-oxidation during
6.3 h. The experiments 13/6 and 18-19/6 illustrate pure ASOA (toluene) and BSOA
(a-pinene) cases respectively.

The SAPHIR chamber is equipped with a suite of instruments. For this study sev-
eral gas concentrations like O3, NO and NO, were monitored, as were temperature
and relative humidity. The actinic flux and the according photolysis frequencies were
provided from measurements with a spectral radiometer (Bohn et al., 2005). In this
study we employed PTR-MS to monitor the concentrations of the VOC (Jordan et al.,
2009). Particle number and number size distributions were measured by condensa-
tion particle counter (UWCPC, TSI3786) and a scanning mobility particle sizer (SMPS,
TSI3081/TSI3786).

Laser Induced Fluorescence (LIF) was applied to measure hydroxyl radicals (OH).
The LIF instrument is described in detail by Fuchs et al., 2012. We calculated the OH
dose in order to better compare experiments at different conditions. The OH dose is the
integral of the OH concentration over time and gives the cumulated OH concentrations
to which gases, vapours and particles were exposed at a given time of the experiment.
One hour exposure to typical atmospheric OH concentrations of 2 x 10%cm™ results
in an OH dose of 7.2 x 10°cm™s.

A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne
Research Inc., DeCarlo et al., 2006) was used to measure the chemical composition of
the SOA. The particles enter the instrument through an aerodynamic lens that reduces
gas phase by about 10 with respect to the particle concentration, so that only particle
composition is detected, except for the main components of air; N,, O,, CO, and H,O
vapour. A tungsten oven at 600 °C flash-vaporizes the particles under vacuum. The
vapours are ionized by 70 eV electron impact (El), and the resulting ions are detected
by means of a time-of-flight mass spectrometer applying either a high-sensitivity mode
(V-mode) or a high-mass resolution mode (W-mode). In this study we made use of the
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so-called MS mode, where ion signals are integrated over all particle sizes, thus the
overall composition of the SOA is determined.

To characterize the degree of oxidation of the particles, two approaches were ap-
plied. The O/C ratio was derived by elemental analysis of mass spectra obtained in the
high-mass resolution W-mode as described by Aiken et al. (2007, 2008). As a proxy
for O/C ratio that can be measured with higher signal to noise ratio, the ratio f44 was
also determined from high sensitivity V-mode data. The ratio f44 is defined as the ratio
of mass concentration of Co; ions (m/z =44 Th) to the signal of all particulate organ-
ics measured by AMS. Using all data where the organic mass loading was at least
0.5ug m~2, we find a linear relationship between O/C and f44 with a slope = 3.3 £ 0.04,
an intercept = 0.09 £ 0.004 and R? = 0.9094. In a similar way as f44 characterizes the
presence of carboxylic acids, f43 (m/z=43Th divided by all organics) characterizes
the presence of less oxidized, carbonyl like material.

Corrections for the (minor) influence of gaseous components preceded the calcula-
tion of the O/C ratio, f44 and f43. Chamber air contains CO, and water vapour and both
gas phase species contribute to the mass spectra. The contribution of gas-phase CO,
to m/z 44 and water vapour to m/z 18 was inferred from measurements during peri-
ods when no particles were present. The values were subtracted to obtain the particle
signals for the elemental analysis (Allan et al., 2004).

A volatility tandem differential mobility analyser (VTDMA) set-up (Jonsson et al.,
2007; Salo et al., 2011) was used to determine the thermal characteristics of the
organic aerosol particles. The aerosol was sampled from the SAPHIR chamber us-
ing 6 mm stainless steel tubing and dried using a Nafion drier (Perma Pure PD100T-
12MSS). A narrow particle diameter range was then selected using a Differential Mo-
bility Analyser (DMA) operated in a re-circulating mode. The size selected aerosol was
directed through one of the eight temperature controlled paths in an oven unit under
laminar flow conditions. Each heated oven consists of a 50cm stainless steel tube
mounted in an aluminium block with a heating element set independently from 298 to
563K £ 0.1 K. To enable swift changes in evaporative temperatures the sample flow
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(0.3 LPM) was switched between the ovens giving a residence time in the heated part
of the oven of 2.8s, calculated assuming plug flow. At the exit of the heated region,
the evaporated gas was adsorbed by activated charcoal diffusion scrubbers to prevent
re-condensation. The residual aerosol was finally classified using a scanning mobility
particle sizer (SMPS). Because of low aerosol concentrations, the initial median parti-
cle diameter was selected to dynamically follow the aerosol size distribution and was
typically set around 80 nm. From the initial particle mode diameter (Dg) determined at
reference temperature (298 K) and the final particle mode diameter (D+) after evapora-
tion at an elevated temperature, the Volume Fraction Remaining (VFRt) was defined as
VFR; = (DT/DRef)3 assuming spherical particles. This procedure was used to ensure
that any change in particle diameter was a result of evaporation in the oven unit and
to minimise artefacts such as evaporation in the sampling lines prior the VTDMA (Salo
et al., 2011). Thermal characterisation was done repeatedly at several temperatures
(from 298 up to 563 K) or the evolution of volatility with time was monitored at a fixed
temperature, e.g. VFR343¢. Anincrease in VFR corresponds to a less volatile and more
persistent aerosol particle.

At the end of experiment sections filter samples were collected to get detailed insight
into the chemical composition of the aerosol particles. The filter samples were taken
using a preceding annular denuder coated with resin to remove gaseous species. The
PTFE filters (ADVANTEC PTFE, pore size 0.2um, & 47 mm) were placed in stain-
less steel housing. Two filters were sampled after each other with a flow of 20Imin'1,
1 hfilter‘1, after the roof was closed at the end of the day. Filters were stored at 253K
prior to analysis. Extraction and analysis of the organic aerosol from the filters followed
the method of Kristensen and Glasius (2011) and will only be described briefly here.
Samples were extracted in acetonitrile, and the extracts were evaporated to dryness
and reconstituted in 200 pl of 0.1 % acetic acid and 3 % acetonitrile in water. All pre-
pared samples were kept at 268 K until analysis. Sample extracts were analysed using
a Dionex Ultimate 3000 HPLC system coupled through an electrospray (ESI) inlet to
a q-TOF mass spectrometer (microTOFq, Bruker Daltonics GmbH, Bremen, Germany)
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operated in negative mode. The HPLC stationary phase was a Waters T3 C18 column
(2.1 x 150mm; 3 um particle size), while the mobile phase consisted of acetic acid
0.1% (v/v) and acetonitrile. Pinonic acid, cis-pinic acid, terpenylic acid, diaterpenylic
acid acetate (DTAA) and 3-methyl butane tricarboxylic acid (MBTCA) were quantified
using authentic standards. Oxidation products from limonene along with dimer esters
from a-pinene were quantified using pinonic acid, cis-pinic acid and DTAA as surrogate
standards. Recovery from spiked filters was 72—-88 % for all compounds except MBTCA
(55 %). No correction for losses during sample handling was applied. Detection lim-
its were 1.1-3.5ng m~2 and analysis of two unexposed filters showed concentrations
close to detection limits.

3 Methods

Aerosol yields from single anthropogenic precursors were determined in experiments
with production of ASOA only. The aromatic compounds have two loss terms in the
SAPHIR chamber: flush out and reaction with OH. The flush-out rate is very well de-
fined in the chamber as the replenishment flow is measured directly and can in addition
be deduced from inert tracers like CO, or absolute water concentration. The chemical
turnover of the aromatic compounds was determined in seven minute time steps by
using the measured concentration drop of the aromatic compound corrected for the
loss by flush-out. For some cases we additionally calculated the chemical turnover
in a different way, applying the measured OH and AVOC concentrations and the rate
coefficient at each time step. In these cases, the sum of chemical loss and flush out
deviated at maximum 15 % from the observed total turnover. Particles have additional
loss terms in the chamber since they deposit and diffuse to the walls. These losses
were estimated assuming that the aerosol mass concentration (Cqp) should be con-
stant at long times, in absence of aerosol production after correction for all loss terms.
The yield is thus given by the chemical turnover of the aromatic compounds divided by
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the loss corrected Cqp at the end of the day, i.e. before closing the roof. The error in
the yield calculation according to this approach is estimated to £20 %.

In order to estimate the anthropogenic fraction in the mixed anthropogenic/biogenic
ABSOA systems a simple chemical/partitioning model was used. The model inputs
were the gas-phase concentrations of OH, the aromatic precursor and the particle
mass as observed. We calculated the sum of all products (£,,,,) formed by the reactions
of the aromatics with OH:

AVOC +OH — P, (1)

By using the measured particle mass and the yield function derived from pure ASOA
experiments we calculated at each seven minutes time interval the fraction of £,
which supposedly is residing in the particulate phase (PP,,) and in the gas phase
(GPg,m)- This information was used to calculate loss terms for GPg,, by flush out and
for PPg,m by flush out and particle loss. The model thus delivers the amount of partic-
ulate aromatic products PP, and its fractional contribution to the total mixed aerosol.
This procedure assumes instantaneous partitioning in order to correct for particle loss
during the experiments. The estimated values will be most representative at those
times when the chemistry is evolved sufficiently and when the estimated macroscopic
yield describes the partitioning of all oxidation products, i.e. at the end of the experi-
ments. This procedure may overestimate the actual loss of P, if the dynamically de-
rived PP, is over-predicted due to slow partitioning, but it will still be a valuable tool
to compare the anthropogenic contribution to the ABSOA in the mixed systems. The
model estimate could be compared to experimental results in two cases. The method
overestimates the ASOA in the 11/6 (toluene) and the 14/6 (xylene) experiments by
40 % respectively 50 %. We therefore divided the contributions calculated by the model
by a factor of 1.4.

20320

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
12, 20311-20350, 2012

ASOA formation and
influence on BSOA

E. U. Emanuelsson et al.

00


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/20311/2012/acpd-12-20311-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/20311/2012/acpd-12-20311-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

4 Result and discussion
4.1 Anthropogenic SOA yields

Figure 2 provides the derived ASOA yields as a function of organic aerosol mass (Cpp)
for the 17 experiments listed in Table 1. The yields are increasing with the organic
aerosol load Cqp as expected from Raoul’s law (Pankow, 1994). A Hill function was
fitted to the yields from all anthropogenic experiments resulting in the following expres-

sion
yield = — 239 @)
0.79
- (8)
OA

The parameter base =7.4 x 1074 (vield for Coa — 0 in the Hill function) was set to 0
and the value of 0.39 in the enumerator predicts the maximum yield at infinite Cqp to
be expected from the aromatic compounds.

The data are within the errors in agreement with previous studies using artificial
sunlight for OH production (Hildebrandt et al., 2009), however at the low end site.
Hildebrandt et al. (2009) corrected their yields for vapour deposition to the chamber
walls or to particles deposited at the walls. The difference could thus be due to neglec-
tion of such wall effects in our case. Assuming the corrections applied by Hildebrandt
et al. were correct the results indicate that wall effects in SAPHIR affect SOA yields
to less than 33 %. For the model calculations of the anthropogenic contributions in the
mixed experiments we adopted the Hill function with the parameters derived above, as
it phenomenologically will present our observation better than the Hildebrandt results
(Hildebrandt et al., 2009, 2011). The principle statements derived are not affected by
this choice.
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4.2 Mixed anthropogenic/biogenic secondary organic aerosols (ABSOA)

Figure 3 shows the experiment ABSOA 22/6. Ozonolysis and reaction with OH radicals
quickly convert the biogenic precursors a-pinene and limonene while toluene is more
slowly removed by OH producing a mixed aerosol (upper panel a in Fig. 3). The aerosol
is in the beginning dominated by biogenic SOA with slowly increasing anthropogenic
contributions later during the course of the photo-oxidation part of the experiment (total
OH dose 5x 10"%cm™ s). The model estimated biogenic and anthropogenic contribu-
tions are shown as green and blue dashed lines (Fig. 3a). At the end of the experiment
filter samples were collected and analysed for specific acids. In Fig. 3a (inset) results
are shown from the filter analysis for a number of identified carboxylic acids and dimer
esters. In the lower panel B of Fig. 3 are the properties of the aerosol as a function
of time are shown, which correspond to concentration evolution shown in the upper
panel. The volume fraction remaining that is non-volatile at a given temperature (ex-
emplified by VFRg43k, VFR373x, VFR403k, @nd VFR,g3k), f44 and O/C are increasing
with time and OH dose, while {43, which is a measure of the less oxidized compound,
is decreasing. The f44 is closely related to O/C but the f44 is generally of higher qual-
ity (less noise) due to the higher sensitivity of the AMS measurements in the IV mode
and consequently f44 is replacing O/C in parts of the evaluation. The behaviour of VFR
was similar at all temperatures and VFR3,43¢ Will be used as an example in the following
discussions. VFR continues to increase at all temperatures in the dark after the roof
chamber is closed. This phenomenon was also observed in the other experiments, and
indicates that non-photochemical processes must take place. Since O/C, f44, and 43
are levelling off when the roof is closed (duration > 6 h), the processes may be even
non-oxidative.

Generally, the time behaviour of 44, f43, O/C and volatility are in accordance with
previous studies on SOA ageing (Tritscher et al., 2011; Salo et al., 2011). The com-
plication in our experiments is that in addition to OH induced ageing and dark ageing
of the SOA also the relative contribution of ASOA and BSOA is changing with time as
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can be seen in the ASOA fraction (blue line in Fig. 3b) with the final ASOA fraction
estimated to about 56 %.

Table 2 provides the average of selected quantities at the end of the experiments,
i.e. when the filters were taken. For ABSOA 22/6 one can see that the reaction mixture
was exposed to a relatively high OH dose (5 x 10" cm™3 s) thus producing a persistent
(high VFR343k), aged aerosol with rather high O/C ratio (0.59 + 0.05) and a significant
fraction of anthropogenic SOA (~ 56 %). For the other ABSOA and BSOA experiments
the O/C ratios are lower.

For the pure ASOA 13/11 experiment the O/C ratio is high (0.79). It should be noted
that in all ABSOA experiments except the 22/6, the AVOC and BVOC were added suc-
cessively, which had implication on the final anthropogenic fraction. In Table 2 the OH
dose is provided separately for the AVOC and BVOC taking into account when AVOC
and BVOC, respectively, were added into the chamber. If for example comparing the
ABSOA 11-12/6 with ABSOA 14-15/6 the BVOC are exposed to more OH in experi-
ment 14-15/6 providing increased VFRg3,43x at somewhat higher O/C ratio. Note that in
exp. 11-12/6 the mixing fan broke during the first day. This affects the observed SOA
mass as the lifetime of SOA in the SAPHIR chamber is longer with the fan switched off
(Salo et al., 2011).

Since the properties of the aerosol at the time of filter sampling and the end of the
experiment depend on several aspects such as OH dose, reaction time and sequence
of addition a more thorough analysis was necessary as described below. However,
generally from the values provided in Table 2 one may conclude that increasing anthro-
pogenic fraction and OH dose provided an aerosol with higher O/C ratio and VFR343¢
thus higher persistency.

4.3 Speciation and compound classes in filter measurements

Figure 4 shows total ion chromatograms of organic acids from the filter samples for
two experiments, ASOA 11/6 and ABSOA 12/6. Exp. 11/6 shows fewer organic acids
in ASOA from toluene compared to the number of organic acids in ABSOA, though it
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is important to note that the analytical method will primarily detect organic acids and
not less polar molecules such as carbonyl compounds that could also contribute to
SOA. The respective chromatogram of exp. 10/6 resembles that of exp. 11/6. SOA
from photo-oxidation of toluene at high NO, conditions have been observed to consist
of a high number of carbonyl compounds as well as small organic acids (Kleindienst
et al., 2004), which may be difficult to detect using the applied analytical conditions.

Table 3 lists selected identified and quantified oxidation products of the precursors
a-pinene and limonene. Quantification of identified a-pinene products showed strik-
ingly similar concentrations (relative to total aerosol mass) within 15 % in aerosol sam-
ples from experiments 10/6 and 12/6. This proves that there is a very good repro-
ducibility of both the SAPHIR chamber experiments and chemical analysis. Exp. 10/6
and 12/6 primarily differ in the order of introduction of VOC reactants to the SAPHIR
chamber, where BVOC mix was added before toluene in exp. 10/6, while toluene was
aged for 5.75 h before addition of BVOC mix in exp. 12/6. Since the concentrations of
oxidation products from a-pinene are quite similar in the two experiments, this indicates
that the presence of toluene ASOA in the chamber prior to BVOC introduction does not
significantly affect the composition of BSOA tracers for a-pinene given in Table 3.

The a-pinene oxidation products can be grouped in first-generation products
(a broadly defined group consisting of pinonic acid, cis-pinic acid, terpenylic acid and
diaterpenylic acid acetate), an identified second-generation product MBTCA previously
identified from gas-phase OH oxidation of pinonic acid (Muller et al., 2012) and sug-
gested as tracer for pinene oxidation (Szmigielski et al., 2007) and dimer esters of
a-pinene oxidation products. The group of dimer esters covers the following specifi-
cally identified compounds: pinyl-diaterpenyl dimer ester (molecular weight, MW 358),
pinonyl-pinyl dimer ester (MW 368) and terpenyl-diaterpenyl dimer ester (MW 344) pre-
viously observed from ozonolysis of a-pinene and B-pinene (Muller et al., 2008, 2009;
Camredon et al., 2010; Yasmeen et al., 2010; Gao et al., 2010; Kristensen et al., 2012).
The class concentration of the particulate organic matter are shown in Table 3 and pre-
sented in Fig. 5. In experiments 10/6 and 12/6, first generation a-pinene oxidation

20324

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
12, 20311-20350, 2012

ASOA formation and
influence on BSOA

E. U. Emanuelsson et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/20311/2012/acpd-12-20311-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/20311/2012/acpd-12-20311-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

products contribute about 3 % to the aerosol mass, while the second generation prod-
uct contributes only about 0.03 %. Dimer esters constitute about twice as much of the
aerosol in exp. 10/6 compared to exp. 12/6 (0.09 % and 0.04 % of the aerosol mass,
respectively), which is probably due to the order of magnitude higher OH dose in exp.
10/6. In exp. 14—15/6 which differs from exp. 11/6—12/6 in the use of xylene instead
of toluene, only 40 % of the aerosol mass was left when the filters were taken. The
higher value in exp. 11-12/6 could be traced back to prolonged the SOA lifetime in the
chamber.

In exp. 22/6 BVOC mix and toluene were added together to the SAPHIR chamber
at the same time and the concentration of BVOC was about one fourth of the previous
experiments. This is reflected in the total aerosol mass at the end of the experiment
which was 3.5 g m™~2, about one fourth of exp. 10/6 and 12/6 (16.5 and 14.6 ug m=3,
respectively). The lower BVOC concentration used in exp. 22/6 results in a gener-
ally lower concentration of almost all identified compounds compared to exp. 10/6 and
12/6 (Table 3). Interestingly, the second-generation oxidation product MBTCA however
shows a significantly higher concentration in exp. 22/6 compared to exp. 10/6 and 12/6
constituting almost 1.4 % of the total aerosol mass (Fig. 5). A possible explanation for
the higher concentration of MBTCA in exp. 22/6 could be the higher OH-to-BVOC ra-
tio compared to exp. 10/6 and 12/6 which could increase the gas-phase oxidation and
ageing of first-generation oxidation products such as cis-pinonic acid. Increased age-
ing in exp. 22/6 may also explain the relatively high fraction of dimer esters (0.33 %
of the aerosol mass) compared to exp. 10/6 and 12/6. This exp. 22/6 with the highest
MBTCA fraction features also the largest O/C and VFR3,43¢ of all ABSOA experiments
(Table 2).

4.4 Persistency (VFR) as function of time, OH dosis and degree of oxidation

Figure 6 illustrates VFR3,43 of five experiments where AVOC is represented by toluene

or xylene, and BVOC is represented by equal amounts of a-pinene and limonene.

To entangle the effects of photochemistry, processes in the dark and anthropogenic
20325
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contribution, VFR343 is displayed as function of experiment duration (upper panel),
OH dose (middle panel) and f44 (lower panel). In all panels the size of the markers
corresponds to the model-estimated anthropogenic fraction of SOA.

In Fig. 6a the time evolution of VFR3,3k is shown as a function of elapsed time,
where the starting time was defined by the start of particle formation induced either by
opening the roof or by injection of AVOC into the illuminated chamber. The correspond-
ing points in time of the VFR3,3x measurements are indicated in Fig. 1. During the first
6 or 9h, respectively, when the reaction mixtures are exposed to sun light, the SOA
become less volatile reflected as an increase of VFR343k, No matter whether ASOA,
ABSOA or BSOA was available. Figure 6a illustrate also that VFR3,43x may increases
with increasing anthropogenic contribution, with pure BSOA (10/6, first data point) at
the bottom and pure ASOA 11/6, 13/6 and 14/6 grouping at the top of the VFR343¢
scale. The ABSOA experiment 22/6 wherein AVOC and BVOC were mixed from the
beginning is situated in between the pure systems.

In the two cases 11/6 and 14/6 when BVOC were added in the dark to pre-existing
ASOA a significant drop in VFR343k is observed. The drop is due to condensation of
fresh BSOA material arising from the ozonolysis of the BVOC. (Ozone was available
from the previous photochemical processes.) The fresh BSOA component is leading
to a much more volatile aerosol. However, the formed ABSOA is then getting less
volatile during the night reflected as an increase of the VFR343¢. In both cases the
roof was opened the second day after about 23 h. In the experiment 15/6 the photo-
oxidation of BVOC and xylene formed fresh particulate material again generating more
volatile aerosol. This is consistent with previous results (Salo et al., 2011) emphasising
the importance of gas phase chemistry in the OH radical induced ageing of SOA. At
the end of 15/6 the VFR343¢ recovered and exceeds the value before light exposure,
indicating that the ageing process continued after the production of fresh material had
ceased, forming a more persistent SOA. The corresponding dip in VFRg,43x was not
seen in the toluene case 12/6 as the extra photo-oxidation did only add a small increase
in SOA mass. The OH dose acting at the second day of experiment 15/6 is about
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twice that of the exp. 12/6 (see below Fig. 6B) in accordance with production of more
fresh material on 15/6. It is noted that the filter analysis revealed more 2nd generation
product at the end of exp. 15/6 in accordance with the higher VFR343x on this day.

Figure 6b displays the VFR343 as a function of the actual OH dose derived from the
OH-LIF measurements. The lowest dose on the scale corresponds to 1.5h exposure to
average atmospheric OH levels of 2 x 10%cm™3, whereas the largest dose corresponds
to 12h exposure. For the aerosols in the dark, any change in the VFRg43 falls on
vertical lines at that OH dose seen by the pre-existing SOA. This OH dose has to be
subtracted in order to get the actual OH dose acting on the added BSOA components
during the photo-chemical ageing on the next day.

Presenting VFR343k VvS. the OH dose simplifies the picture for the first hours. Over-
all, the VFR of SOA increases with OH dose and the higher VFR343¢ for ASOA is
partly caused by exposure to a larger OH dose. Experiment 15/6 and 22/6 show higher
VFR343x compared to exp. 10/6 and 12/6, which were exposed to smaller OH dose.
The latter have both lower 2nd generation product fraction compared to 15/6 and 22/6,
and smaller dimer fractions than exp. 22/6 (Fig. 5). We conclude that the ageing and
formation of a less volatile aerosol, reflected as an increase of VFR, is overall related
to the OH dose, thus to photo-chemistry. The influence of the photo-chemistry on the
BSOA components is also reflected in increasing 2nd generation product and to less
extent the dimer fraction.

For the pure ASOA the relative increase of VFRg43x with OH dose is less pro-
nounced, compared to ABSOA and BSOA dominated aerosols. The onset of ASOA
particle formation and the first available VFR3,43 data occur at larger OH dose, due
to the lower reactivity of the AVOC. In addition first generation oxidation products of
AVOC (mainly carbonyls see above) may have higher vapour pressures compared to
the BVOC and more oxidation steps are needed to induce SOA formation. As a conse-
quence the potential of ageing after particle formation is smaller for ASOA, since the
vapours aged already in the gas-phase prior to particle formation. In contrast BSOA
from the reactive precursors a-pinene and limonene is formed already at low OH dose.
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In addition, during rapid formation, vapours with higher vapour pressures also reach
saturation and contribute to the BSOA mass (Pankow, 1994; Odum et al., 1996), lead-
ing to a higher volatility early in the formation phase. These vapours will react (age) with
OH and this leads to increasing low volatile second generation products e.g. MBTCA
(Mdller et al., 2012). The curve for the mixed ABSOA (22/6) is connecting the BSOA
experiment with the ASOA regime, as significant ASOA fraction is building up during
the formation process (comp. Fig. 3a). Interestingly, for the exp. 10/6 where toluene
was added to pre-existing BSOA, the VFR3,3¢ increase of the ABSOA with OH dose
accelerates with increasing ASOA contribution. This behaviour is distinct although only
up to 8-9 % of the aerosol is calculated to be ASOA (Table 3). This suggests that even
small contributions of ASOA can reduce the volatility and enhance the persistence of
ABSOA.

After the roof was closed at the end of the day we took one data point in the dark with
all other parameters unchanged. The VFR3,3¢ continues to increase consistently for all
investigated ASOA and ABSOA systems. One toluene experiment (13/6) was exposed
to more OH than the others but still showed indications for ageing under dark condi-
tions, however weaker. Since the volatility of ABSOA decreases also in the dark, the
enhancement during daytime in experiment (10/6) may also have non-oxidative contri-
butions. Night time ageing processes were reported before by Tritscher et al. (2011) for
a-pinene SOA.

Figure 6¢ shows the VFR343¢ as function of 44, which is related to the O/C ratio
for biogenic and aromatic systems (Aiken et al., 2008; Chhabra et al., 2010, 2011).
Simplistically, a higher f44 indicates increasing contribution of carboxylic acids. Here
we deploy less data points since the detection level was insufficient for the xylene
ASOA.

The two pure ASOA systems show high VFR3,43«, and the largest f44 signal at 0.2
and ~ 0.25, respectively. The f44 are larger than f44 reported by Chhabra et al. (2011)
(0.05-0.1) and in the range of f44 reported by Aiken et al. (2008) for ambient urban
aerosol. For the ASOA in exp. 11/6 the standard deviation of f44 is large (0.09) while in
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exp. 13/6 it is significantly lower (0.004). A difference between these two experiments
is that in the 13/6 a small addition of NO, was made but from the yield curve shown in
Fig. 2 this should not influence the aerosol production. Considering the large scatter of
the f44 data on the 11/6 we neglect this data for the further considerations and assume
that pure ASOA systems have f44 of 0.2 in line with the 13/6 experiments. Independent
of that, the large observed f44 for pure ASOA corroborates our suggestion that more
oxidation steps are needed and that AVOC vapours are more oxidized before they form
particulate matter, probably because they have smaller C-backbones.

The fresh mixed ABSOA 22/6 features low VFR343¢ of 0.79 at f44 of 0.11. During
on-going photo-oxidation VFR3,5 is increasing with increasing f44. At f44 of 0.15 the
VFR343k of the ABSOA reaches values in between the pure BSOA with f44 ~ 0.1 and
the pure ASOA systems with f44org ~ 0.2. This observation corroborates our model
estimate of ~ 60 % anthropogenic contribution, as — assuming linear mixing behaviour
— a f44 = 0.15 indicates a 50/50 mixture of BSOA and ASOA, when pure BSOA has
a f44 of 0.1. An increase of f44 is also seen in exp. 10/6 after toluene was added to the
BSOA aerosol. The increase of VFR343¢ With f44 in experiment 10/6 is similar to 22/6,
but shifted to 20 % lower f44 values. The large change in VFR343¢ With f44 for both AB-
SOA experiments supports that the presence of ASOA components enhances the per-
sistence of the aerosols, possibly in a non-stoichiometric fashion. The strong tendency
to increase VFR with only small changes in oxidation state would be commensurable
with oligomerisation processes, which were first described for trimethylbenzene, also
an aromatic precursor (Kalberer et al., 2004).

The addition of BVOC to ASOA followed by ozonolysis in exp. 11/6 and 14/6 reduces
f44 from about 0.2 to about 0.1 in both cases, i.e. the aerosol is obviously dominated by
BSOA. In the ABSOA exp. 12/6 not much change occurred when exposing the ABSOA
to sunlight the second day while in the ABSOA 15/6 chemical changes during the dip
in VFR343¢ Were observed with f44 increasing with sun exposure and OH dose from
0.10to 0.11.
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In summary, ASOA shows larger VFR343k, i.€. lower volatility associated to higher
degree of oxidation than BSOA and ABSOA. To reach the larger degree of oxidation
longer exposure to OH radicals is needed. In ABSOA already small fractions of ASOA
lead to strong increase in VFR343, even at low degrees of oxidation, indicating that
ASOA components trigger an extra persistence either by oligomerisation or morpho-
logical changes e.g. formation of glassy states (Zobrist et al., 2008; Virtanen et al.,
2010). Since VFRg43k increase also overnight in presence of low ozone concentra-
tions, a slow non-photochemical, if not non-oxidative ageing process must also take
place. This process is not much affecting the oxidation state and could be oligomeriza-
tion by condensation reactions.

5 Atmospheric implications

Oxidation of aromatics and other traditional anthropogenic VOCs can contribute sig-
nificantly to SOA formation. Using newly derived aerosol yields de Gouw et al. (2008)
accounted for a large fraction (37 %) by oxidation of traditional anthropogenic SOA pre-
cursors and the remaining fraction remained unexplained. A large unexplained fraction
was typical for model and measurements comparisons and has been addressed in
several previous studies where e.g. Volkamer et al. (2006) specifically demonstrated
how ASOA was under-predicted in urban air masses by up to a factor of 10. During
recent years several explanations have been suggested for these inconsistencies. One
finding is that SOA formation from aromatic systems has significant higher yields than
previously reported which was further recognised in our study (Table 1 and Fig. 2).
However, in the study of de Gouw et al. (2008) the higher yields from aromatic system
were already applied and 63 % SOA mass was still found unexplained. Other explana-
tions for this gap can be missing primary precursors, oxidation of intermediate volatile
compounds and effective ageing of SOA (Pye and Seinfeld, 2010). All these issues
have been addressed in a series of modelling studies of air pollution in Mexico as
part of the MILAGRO experiment (see e.g. Tsimpidi et al., 2011; Dzepina et al., 2009,
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2011; Hodzic et al., 2010). The finding from the present study that mixed ASOA and
BSOA can evolve rapidly producing a persistent aerosol with low volatility favours an
ageing treatment in models with reduced evaporation upon dilution with increasing OH
exposure (Dzepina et al., 2011).

Using a combination of global modelling efforts and observations of OA (AMS) and
OC (filters) Spracklen et al. (2011) proposed a new source attribution of SOA. Ac-
cording to their analysis 2/3 of the SOA may have biogenic precursors but is strongly
related with the CO source distribution, an anthropogenic tracer. Such effects were pro-
posed before by de Gouw et al. (2005, 2008) and de Gouw and Jimenez (2009). This
portion of SOA is called anthropogenic enhanced SOA. Our findings may contribute
to understand anthropogenic enhancement. Aromatic emissions are surely closely re-
lated to CO emissions and if an ASOA fraction of 10 % or more is available this should
increase the persistence of the resulting ABSOA. The persistency enhancement is
not available in remote, biogenically dominated regions, where aromatic emissions are
absent. Since ABSOA is more persistent than BSOA, less BSOA is observed than AB-
SOA at same source strength of BVOC. However we also showed that OH dose is an
important driver of ageing and persistence of SOA, thus we do not claim that we can
fully explain the anthropogenic enhancement. However such effects of aromatics could
contribute significantly to anthropogenic enhancement.

The exposure of the reaction mixtures to natural OH dose and the long duration of
experiments lead to concentrations of monoterpene oxidation products as listed in Ta-
ble 3 that are generally higher, but still comparable to concentrations found in aerosol
samples from ambient air (Kristensen and Glasius, 2011; Zhang et al., 2010). Dimer
esters have previously been identified from ozonolysis of a-pinene in smog chamber
studies and ambient air (e.g. Camredon et al., 2010; Kristensen et al., 2012). Our re-
sults can be connected to atmospheric conditions using the OH dose, for example the
OH dose in BSOA 22/6 is 5.0 X x 10'°cm™s and corresponds to 7 h of exposure to
an OH radical concentration of 2 x 10° cm™>. The final aerosol mass of 3.6 Mg cm™is
also comparable to atmospheric observations of organic aerosol mass in urban plumes
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(Tsimpidi et al., 2011). We thus conclude that our findings are transferable to the atmo-
sphere.

6 Conclusions

The main focus of this work was to study aerosol formation and properties from photo-
oxidation of mixed anthropogenic and biogenic precursor to mimic real world condi-
tions. In a separate set of experiments also the aerosol yields of anthropogenic SOA
were quantified. The anthropogenic yield data were used to estimate the ASOA contri-
bution to aerosol mass in the mixed ABSOA experiments applying a simplified model.
The estimated ASOA contributions ranged from very small (>1 %) up to significant
fraction (> 50 %), providing a suitable range to study the effect of ASOA on aerosol
properties. Absolute measurements of OH radicals were used to constrain the esti-
mated conversion of anthropogenic precursor in the mixed experiments and providing
a direct measure on OH dose.

The volatility of the aerosol is an important measure of the thermal persistence of
particles in the atmosphere, and was used in combination with the OH dose, anthro-
pogenic fraction and chemical composition of the particles to understand the underly-
ing aerosol processes. Aromatic anthropogenic systems produced aerosol with lower
volatility than the biogenic system. However, in order to produce significant anthro-
pogenic aerosol fraction the systems were exposed to large OH doses, corresponding
to oxidation over several hours at mid-European photochemical conditions. The larger
OH dose did also influence the chemical composition as evidenced by higher concen-
trations of dimer esters and second generation products in the particles. The VFRg43¢
generally increased with increasing OH dose, but if a reactive VOC was added or
a system with remaining gas phase vapour was exposed again to sunlight the VFR343«
dropped temporarily in analogy to the observation described in Salo et al. (2011). Since
the ASOA had a lower volatility than BSOA any changes in the anthropogenic fraction
did influence the overall volatility.
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In addition to OH induced ageing and the anthropogenic fraction of the particles,
the VFR3,43k Was also affected by a time dependent ageing, that occurred during dark
hours, and might be linked to condensed phase processes such as polymerisation. The
observed volatility changes and associated processes were compared to the chem-
ical composition of the aerosol, O/C and f44 (fraction of m/z = 44). Analogous to the
VFR343k changes, the O/C ratio increased due to OH induced ageing and with increas-
ing anthropogenic fraction. However, for the third process, that dominated VFRz43¢
changes during dark hours, no relation to O/C ratio could be established. The inter-
pretation is that this process does not change the overall chemical composition but
the volatility, and was consequently attributed to changes in viscosity, e.g. induced by
polymerisation.

Given the observation in the particulate phase and the exposure to natural sun-light
at realistic OH concentrations our findings should be applicable to the atmosphere. The
persistence induced by ASOA (and OH dose) have an influence on the atmospheric
SOA lifetime, where the BSOA fraction in mixed ABSOA should have longer lifetimes
and thus higher abundance in anthropogenically influenced areas with distinct aromatic
emissions compared to BSOA in natural regions. This effect should be considered in
regional and global model predictions.
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Table 1. Summary of SOA mass yields of aromatic compounds included in this study. High and
low NO, refers to 10 ppb and 1 ppb respectively. Given are also the respective OH rate coeffi-
cients from the NIST Kinetic Data Base. For comparison are the OH reaction rate coefficients

of the monoterpenes Ky pinene+on = 5.3 x 107" and Kiimonene+oH = 1.6 x 107"%cm®s

- Cona pro-

vides the organic aerosol mass concentration at the end of the experiment, corrected for flush

out and wall deposition.

Experiment AVOC NO, Rate coefficient ~ SOA Con
(ecm3s™" Yield  (ugm~3)
ASOA (8/6) benzene high 1.2x107"2 0.031 1.4
ASOA (7/6) benzene low 1.2x107" 0.082 5.9
ASOA (1/8) benzene low 1.2x107?  0.0005  0.03
ASOA (4/8) toluene low 5.6x 1072 0.002  0.18
ASOA (11/6) toluene low 56x107"2 0.039 1.9
ASOA (14/6) p-xylene low 1.4x107" 0.012 048
ASOA (16/6) p-xylene high 1.4x107" 0.042 25
ASOA (21/7) p-xylene low 1.4x107" 0.018 05
ASOA (16/8)  p-xylene (D) low (~1.4x107"")" 0.0007 0.019
ASOA (21/7)  p-cymene  high/NO,  1.51x10"""  0.045 25
ASOA (22/7)  p-cymene high'NO  151x10™""  0.091 5.4
ASOA (25/7)  p-cymene low 1.51x107"  0.021 0.78
ASOA (21/6)  mesitylene high 567x107""  0.021 0.3
ASOA (17/6)  mesitylene low 567x10"""  0.027 0.4
ASOA (10/8)  mesitylene low 567x10"""  0.0004  0.01
ASOA (27/7) HMB? low 1x1071 0.0001  0.018
ASOA (29/7) HMB? low 1x1071 0.0001  0.019

! estimated from p-xylene.
2 hexamethylbenzene.
3 Berndt and Bége (2001).
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Table 2. Summary of initial precursor concentrations and selected quantities at the time of filter
collection. The OH dose is the accumulated measured dose since BVOC and AVOC addition,
respectively. All uncertainties given are the statistical standard deviations. The ASOA fraction
is estimated by model calculations and derived from f44 observed in ASOA and BSOA by AMS.

Experiment BVOC AVOC SOA mass OH-dose OH-dose VFR343¢  O/C ASOA
precursor (ppb) precursor (ppb)  (ugm>) £stdev  AVOC (cm™3s) BVOC (cm™3s) +stdev fraction' (%)

ABSOA a-pinene & limonene  toluene 16.4 1.6x10" 3.3x10™ 0.86 0.46 8 (30)

(10/6) (40 ppb) (85 ppb) 15 +0.01

ABSOA a-pinene & limonene  toluene 14.6? 6.5x10" 0.4x10" 0.86 0.43 8(9)

(11-12/6) (40 ppb) (85 ppb) +0.6 +0.02

ABSOA a-pinene & limonene  xylene 5.7 6.7x10™ 1.1x10" 0.92 0.45 13 (18)

(14-15/6) (40 ppb) (30 ppb) +0.4 +0.03

ABSOA a-pinene & limonene  toluene 35 5.0x10" 5.0x10" 0.94 0.59 56 (55)

(22/6) (8 ppb) (60 ppb) £0.4 +0.05

ASOA toluene 1.2 6.0x10" n/a 0.98 0.36 100

(11/6) (85 ppb) +0.07 +0.12

ASOA toluene 47 8.5x10" n/a 0.98 0.79 100

(13/6) (85 ppb) £0.4 +0.04

ASOA xylene 0.20 5.6x10" n/a 0.95 0.44 100

(14/6) (30 ppb) +0.03 +0.22

BSOA? a-pinene 26.2 n/a 2.1x10" 0.79 0.43 0

(18/6) (40 ppb) £1.6 +0.02

BSOA? a-pinene 6.4 n/a 6.0x10" 0.88"  0.46 0

(19/6) (40 ppb) +0.2 +0.02

" values in () from AMS measurements.
2 longer SOA lifetime due to failure of mixing fan.
3 salo et al. (2011), ACP.
4 2 after filter.
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Table 3. Concentration of quantified BSOA tracer compounds in filter samples. All listed com-
pounds were below detection limit (b.d.) in ASOA samples (11/6 and 13/6). Concentration in
ngm™? if not stated elsewise. Molecular weights MW are given in gmol™".

ACPD
12, 20311-20350, 2012

Jaded uoissnasig

Compound name, ABSOA ABSOA ABSOA ABSOA BSOA BSOA
abbreviation and MW (10/6) (12/6) (15/6) (22/6) (18/6) (19/6) =
Terpenylic acid 28.7 28.6 1.1 10.9 76.6 11.6 ASOA formatlon and
(TPA) MW = 172 .
Diaterpenylic acid acetate 6.9 3.7 2.0 2.8 25.3 5.2 - I nfl uence on BSOA
(DTAA) MW = 232
Pinic acid 63.9 69.2 17.2 127 613.5 36.3 o
(AP1) MW = 186
cis-pinonic acid 3.0 3.7 15 2.9 13.8 1.9 0 E U Emanuelsson et al :
(AP2) MW = 184 o
Hydroxy-pinonic acid? 15.2 35.1 4.9 36 21.1 9.7 c
(AP3) MW = 200 %
Norlimonic acid’ 34.3 39.8 7.2 24 b.d b.d —
(Li1) MW = 186 g
Keto-limononic acid® 79 19.5 1.8 13 b.d b.d
(Li2) MW = 186 U
Keto-limonic acid’ 188.7 158.1 20 9.4 QD
(Li3) MW = 188 °
Hydroxy-keto-limononic acid' 145.0 121.7 30.1 171 EE
(Li4) MW =202
o add‘ . e ” ! !
unknown acid' MW = 202 111.6 135
Sum of 1. generation products o
[Ingm™> air] 493.6 479.4 105.8 63.1 59.1 88 o
[ngug™' PM]  30.1 32.8 18.6 18.0 36.6 13.8 8
2. generation product %
3-Methyl butane tricarboxylic acid —_
(3-MBTCA) MW =204 g
[ngm~ air] 4.1 4.4 4.8 30.2 320.8 42.7
[ngug™' PM] 0.3 0.3 0.8 8.6 122 6.7 ;)U
Terpenyl-diaterpenyl dimer ester® 0.7 0.7 18.3 1.8 8
(DE1) MW =344 =
Pinyl-diaterpenyl dimer ester® 7.3 25 1.0 5.2 292.5 28.6
(DE2) MW =358 .
Pinonyl-pinyl dimer ester® 7.4 35 1.4 1.4 141.8 15
(DE3) MW = 368
Sum dimer esters 9
[ngm—2air] 15.4 6 2.4 7.3 452.6 41.9 %
[ngug™' PM] 0.9 0.4 0.4 2.1 17.3 65 %
. @,
Quantified using cis-pinic acid as surrogate standard. g _
Quantified using cis-pinonic acid as surrogate standard. T
3 - .
Quantified using averaged standard curves of the precursors (see %
Kristensen et al., 2012). (0]
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Fig. 1. An overview of the experimental procedures. Main bars indicate SOA-type; ASOA (blue),
BSOA (green), and ABSOA (violet). Sunlight exposure is shown by orange bars and filter sam-
pling by grey. Crosses indicate measurements VFRg,3x by VTDMA. The arrows indicate when
extra ozone was added to the chamber. Before experiment 11-13/6, 13/6 and 14/6 the SAPHIR
chamber was exposed to sunlight before addition of organic precursor in order to determine the
background reactivity.
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Fig. 2. ASOA mass yield as a function of the organic aerosol concentration for aromatic (an-
thropogenic) precursors and cymene. The data points and the black fitting curve were achieved
in this study. The blue and red curves were calculated according to Hildebrandt et al. (2009).
Bands of £20 % uncertainty intervals are grey shaded. We acknowledge the kind support by

Lea Hildebrandt.
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Fig. 3. ABSOA experiment 22/6 where biogenic and anthropogenic precursors are added simul-
taneously. Top panel (A) shows the concentrations of reactants toluene (blue), monoterpenes
(green), ozone (magenta), OH (red dashed) and produced SOA (black). The model derived
biogenic (green) and anthropogenic (blue) SOA fractions are given as dashed lines. The inset
shows the results of the filter analysis at the end of the experiment (compare Table 3). Bottom
panel (B) shows the aerosol particle properties VFR343¢, VFR373k, VFR4o3k, VFRugak (black
diamonds), O/C (magenta), f44 (dark green), and f43 (light green) together with model derived
anthropogenic aerosol fraction (blue) and the OH dose (red dashed).
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Fig. 4. Total ion chromatogram of organic acids in aerosols from (A) toluene after ageing (exp.
11/6), and (B) the same experiment after addition of BVOC mix and further ageing (exp. 12/6).

Major identified and unidentified peaks are highlighted.
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Fig. 6. VFR,,5« for selected ABSOA experiments as a function of (A) elapsed time (B) OH
dose (C) f44. f44 for ASOA 11/26 have a large stdev (grey horizontal error bars) due to low

f44: fractional signal at m/z = 44

signal compared to ASOA 13/6 (blue horizontal error bars).
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